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Energy Challenge

Population
Energy demand
Energy security

Environment
Climate change
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Evolution of Nuclear Power Plants

The Evolution of Nuclear Power

Generation I

Generation 11

Early Prototype Generation II

- - Near-Term
Reactors Commercial Power . Deployment
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eneration IV
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Advanced Reactors

SMRs

(NuScalePWR, OKBM PWR, B&W
ABWR,ACR 1000, mPowerIndia DAE AHWR, KAERI
AP1000,APWR, SMART PWR, OKBM K405 PWR)

Atmeal, CANDU
6, EPR, ESBWR,
VVER 1200

Evolutionary Designs Innovative
(ABWR,ACR 1000, AP1000, APWR, Designs

Atmeal, CANDU 6, EPR, ESBWR,VVER

................. 1200) oS (SFRGFRLFR,

> SCWR,MSR)|| [ T
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Generation IV  Participants
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Generation IV drivers

1 Initiativeof US Department of Energy to make nuclear
energy part of future energy supply

} Driver:the 21st century will see vastly increased demand
for electric energy that is sustainable, secure, clean,
affordable

} 10 countriesoriginially
} 2002 Generation IV Technology Roadmap

} 2014 Generation IV Technology Roadmap updat@
additional countries
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Gen |V Technology Roadmap

} ldentification of systems that offer significant progress with
respect to:

}  Sustainability
} useof natural resources
} minimizationof quantity and life time of radioactive waste
} Safetyand reliability
} safeand reliable in operation
} low probability of core damage
} eliminatenecessity of ofite emergency response
} Economics
} low life cycle costs
} low financial risk
} Proliferation unattractive for diversion or theft for use in nuclear
weapons
} Terrorism: improved resistance
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Technology Roadmap

} 6 desigrconceptyidentified

} Sodium cooledFastReactor(SFR), Lea@ooled Fastreactor
(LFR), Gagooled FastReactor(GFR)Molten SaltReactor
(MSR)A Sustainability

} VeryHighTemperatureReacto(VHTR)A Safetyandrelaibility
} Super CriticaWater Cooled Reacto(SCWRA Economics

} 11 i DLI
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6 Gen IV Systems

Lead-cooled Fast Reactor
(LFR) (GFR)

Supercritical-Water- Very-High-Temperature
cooled Reactor (SCWR) Reactor (VHTR)




Goals of Generation IV

} Sustainability:

} Generation IV nuclear energgystems will provide
sustainable energy generation that meglean air objectives
and promotes longerm availabilityf systems and effective
fuel utilization for worldwide energy production.

} Generation IV nuclear eneregystems wilminimize and
manage their nuclear waséad notably reduce the long
term stewardship burden, thereby improving protection for
the public health and the environment.

} Economics:

} Generation IV nuclear energy systems will hawtear life
cycle cost advantag®ver other energy sources.

} Generation IV nuclear energy systems will have a level of
financial risk comparable to other energy projects

> [l

ATOMINSTITUT



Goals of Generation IV

} Safety and Reliabllity:

Generation IV nuclear energy systems operations will excel in
safety and reliability, they will have a v&w likelihood and
degree of reactor core damagad

Generation IV nuclear energy systems wiilininate the need
for offsite emergency response

} Proliferation Resistance and Physical ProtectBaneration IV
nuclear energy systems will increase the assurance that they
are very unattractive and the least desirable route for
diversion or theft of weaponsisable materials, anmovide
Increased physical protecti@gainst acts of terrorism.
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Application of Gen IV Reactors

Electricity Hydrogen
Production Both Production

-5CWR - GFR - VHTR
-5FR -LFA
- MSR

500°C —— Oullet Temperalire — 1000°C

Oncea-Through Actinide
Fuel Cyele Fithar Management
I | | | | |
-VHTR - SCWR - GFR
-LFR
- MSR
- SFR
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Generation |V General Design

Neutron Temp. Size(s)
spectrum Coolant (°C) Fuel Fuel cycle (MWe)
SFR fast sodium 550 U-238 & MOX closed 50-1500
VHTR | thermal | helium | 1,000 | YO2PMSMOr|  ohen | 250300
pebbles
GFR fast helium 850 U-238 closed 1200
thermal or open
SCWR water 500 UO,or MOX | (thermal) or| 300-1500
fast
closed (fast)
Pb or
LFR fast Pb.Bi 480-800 U-238 closed 20-1200
MSR | epithermal fIL;(;rll[(ie 700-800 UF in salt closed 1000
~
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Spent Fuel and Uranium Resources

Worldwide Spent Fuel Worldwide Uranium Resource Utilization
50-
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- LWR Once Through =
gg 500 Eﬁ 30
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Fast Neutron Reactors

} A solution for both an optimized use of resources and waste
minimization
} Fastneutrons allow a more efficient burning of actinides

because the ratio of fission/capture cross sections is higher
than with thermal neutrons.

} Thefirst consequence is the possibility of positive breeding
gains which allows to burn all the uranium through conversion
of Uranium 238 in Plutonium 239.

} Another interesting feature is the possibility of burning all the
actinides produced in the fast reactors themselves or in light
water reactors by continuous recycling, thereby reducing
considerably the long term radioactive potential of waste.
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Breeding Process

}+ If a neutron is captured by a Uraniu88, following a
short series of decays, it is transformed to Plutonid3D.
The process is shown In the figure below: symbol +n
Indicates a neutron absorption$epresents radioactive
decay by beta emission with the hiié shown below the

alroOw.
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23.5 min 2.35days
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Recycling to optimize the use of uranium
resources

p
i p 4kg> W+ PF
. 100 kg - | Recycling | —p
000k || | use, |7 LEmed = { 1kg Pu
U nat I 900 kg | 95 kg U rep
U dep
.

} Fastneutron reactors burn plutonium while converting U 238
Into plutoniumthat is burnt in situ (regeneratioA breeding

of fissile fuel)

} The existing depleted uranium that is stored today In
France is worth 5000 years of current nuclear production.
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Waste minimization
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Technologies 0 Fast Reactors

} To keep a fast neutron system it is necessary to avoid light
elements in the core and in particular for the cooling system.

+ Thetwo main possibilities for cooling are liquid metals or
gases.They are part of Gen |V selected systems.

} A broad worldwide effort have been devoted to sodium
cooling technology including industrial prototypes (BN60O in
RussiaSuperphenipin FranceMonjuin Japan).

} TheRussians have used lead cooling for naval reactors and
some more studies have been made for possible use of lead ¢
leadbismuth cooling systems.

} Theuse of helium technology developed 81 GRs isalso
considered for fast reactors.

} After a negative attempt to use vapor cooling, supercritical
water has been selected by the GIF as a possible candidate ft
fast reactor cooling.
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Fast Reactors in Operation/ under
Construction

} Japan
} Joyod experimentakeactor (140 MWth) d suspended
} Monjy, prototype (280Mwe) 0 expectedto be decommissioned

} Russia
BOR-60 d experimentakeactor (12 MWe) & in operation
MBIR; experimentakeactor (55MWe) 6 underconstruction
BN-600 0 prototype (600MWe)d in operation

BN-8000 demonstration(800 MWe) 0 in operation
BN-12000 commercial(1220MWe) d under construction
BRESB00d 300 MWe constructionstarted

—— e md mpd md
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Fast Reactors in Operation/ under
Construction

} China
} CEFR, experimental (2dWe) & in operation
} CDFR1000ddemonstration(1000MWe)o under construction

} FBTRexperlmental (2CMWe) 6 In operation
} PFBR, prototype (50MWe) undercommissioning
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Liguid Metal Fast Breader Reactors

} Liquidmetals are the preferred option due to their
excellent heat transfer properties

} Possiblechoices of liquid metal coolant are mercury, lead,
sodium and a sodiwpotassium NakK) mixture

}y Sodiumbest choice: High dens
y High speci fic heat = 1.28 J
} High boiling point: 883 EC
} Mel ting point: 98 EC
} Strongly activated: Na24, 15 h halfife
} Intense gamma emitter: 1,4 MeV

ATOMINSTITUT




Core and Blanket

} The LFMBR corés composed of two parts: core and
blanket

} The fission process takes place in the core volume

} Extra neutrons diffusing out from the core are absorbed
In a material ( depleted 1238) surrounding the core
which is called the radial blanket.

} In the vertical direction escaping neutrons are absorbed
In the vertical blanket.

} This material is directly incorporated into each fuel rod
above and below the fuel region (depleteel38)

—
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Physics behind LFMBR

} Theaverage number of neutrons produced in one fission
process is around= 2.5 for thermal fission and increases
up to about' =3 at 100keV neutron energy

} Therefore LFMBR hawo light nuclei in core (no
H,D,C,0,B¢

} One neutron iIs necessary to continue chain reaction,
some neutrons are lost in reactor materials

} Extraneutrons can be captured by-R38 to be
converted to Pu239

} Total number of fissile nuclei (FP289) in the reactor
Increase as the reactor operates

L [T
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Example

+ Assumption: 100 fissions produce 300 fast neutrons
} + 100 neutrons to continue chain reaction
} + 100 neutrons convert kP38 to Pu239 in the core
} - 40 are lost by parasitic absorption in core
} - 60 leave the core for the blanket (leakage)
} + 50 convert U238 to Pu239 in the blanket
} - 10 are lost again by parasitic absorption

p 28
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Physics 2

} Breedingatio (BR): Number of produced fissile nuclel
(Pu239) by absorption in 238 to number of consumed
nuclel in fuel
} BRin core: 0.8
} BRIn blanket: 1.25

} MainPu239 production in blanket due to resonance
absorption in U238 (between 5 and 5000 eV)

ATOMINSTITUT
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Sodium Cooled Fast Reactor

Sodium-Cooled-Fast Reactor

Pool Design
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Sodium Cooled Fast Reactor

Reactor Parameters Reference Value

Outlet Temperature
Pressure

Rating

Fuel

Cladding

Average Burnup
Conversion Ratio

Average Power Density

530 0 550°C

-1 Atmospheres
1000-5000 MWth

Oxide or metal alloy
Ferritic or ODS ferritic
-150 6 200 GWD/MTHM
0.501.30

350MWth/m3

1
57
|
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Sodium Cooled Fast Reactor System

Fastspectrum reactor and closed fuel recycle system.
Power from a few hundre®fWe to 15001700MWe.
Sodium core outlet temperatures are typically 8360°C.
Either pool layout or compact loop layout is possible.

Primary system operates at essentially atmospheric pressure,
pressurized only to the extent needed to move fluid.

Sodium reacts chemically with air and with water, design must
limit the potential for such reactions and their consequences

Secondary sodium system acts as a buffer between the
radioactive sodium in the primary system and the steam or
water

If a sodiumwater reaction occurs, it does not involve a
radioactive release.

B
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Sodium Technology

} Sodium is a very suitable coolant:
} liquidin a wide range of temperatures (9890°C)
} monoisotope (Na23)
} thermodynamicparameters
} no corrosion (when purified)
} Largeindustrial experience :
} variousindustrial uses
} 40vyears of technological studies for nuclear applications
} manyprototypes

} Well-known drawbacks :
} chemicaleactivity (sodium fires and sodiuwater reactions)
} difficultiesfor handling and inspection

p 33
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Safety Features

} long thermal responseme
} areasonable margin to coolant boiling

} aprimary system that operates near atmospheric
pressure

} anintermediate sodium system between the radioactive
sodium in the primary system and the power conversion
system
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Actinides Managment

} SFRs operatevith high energy neutrons that are more
effective affissioningactinides. The main characteristics of
the SFR for actinide management mission are:

} Consumption oftransuranicsn a closed fuel cycle, thus
reducing the radiotoxicity and heat load which facilitates waste
disposal and geologic isolation.

} Enhanceditilisationof uranium resources through efficient
management of fissile materials and maitiycle

} Minor ActinidesNp,Am, Cm Bk, Cf, ESFmA responsible
for the bulk of radioactivityin wasté!
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Pool Type

} Vessel very simple design with only few pipes

} Disadvantagesf the pool: vessel is large, must be
fabricated orsite, difficult quality assurance

} In operation internal structures difficult to inspect as they
operate under liquid sodium
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Phenix Reactor - France

Cover argon

Sodium
in hot pool
(550 °C)

Sodium
in cold pool
(400 °C)

Intervessel
nitrogen
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Loop Type

} Vessel much smaller
} Canbe bulilt in a factory and transported to the site

} The pipework of the loop reactor may be longer and
more complicated but it is easier to inspect
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SFR Prototype Monju Japan
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